Quantitative linearized study of the Boltzmann collision operator and applications
نویسنده
چکیده
We present recent results [4, 28, 29] about the quantitative study of the linearized Boltzmann collision operator, and its application to the study of the trend to equilibrium for the spatially homogeneous Boltzmann equation for hard spheres.
منابع مشابه
Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials
For the spatially homogeneous Boltzmann equation with hard potentials and Grad’s cutoff (e.g. hard spheres), we give quantitative estimates of exponential convergence to equilibrium, and we show that the rate of exponential decay is governed by the spectral gap for the linearized equation, on which we provide a lower bound. Our approach is based on establishing spectral gaplike estimates valid ...
متن کاملSpectral-Hermite Approximation of the Linearized Boltzmann Collision
A sequence of approximate linear collision models for hard-sphere and inverse-power-law gases is introduced. These models are obtained by expanding the linearized Boltzmann collision operator into a Hermite series, and a practical algorithm is proposed for evaluating the coefficients in the series. The sequence approximates the linearized Boltzmann operator to high accuracy, and it establishes ...
متن کاملHypocoercivity for a Linearized Multispecies Boltzmann System
A new coercivity estimate on the spectral gap of the linearized Boltzmann collision operator for multiple species is proved. The assumptions on the collision kernels include hard and Maxwellian potentials under Grad’s angular cut-off condition. Two proofs are given: a non-constructive one, based on the decomposition of the collision operator into a compact and a coercive part, and a constructiv...
متن کاملGlobal hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff
In this article we provide global subelliptic estimates for the linearized inhomogeneous Boltzmann equation without angular cutoff, and show that some global gain in the spatial direction is available although the corresponding operator is not elliptic in this direction. The proof is based on a multiplier method and the so-called Wick quantization, together with a careful analysis of the symbol...
متن کاملExplicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials
This paper deals with explicit spectral gap estimates for the linearized Boltzmann operator with hard potentials (and hard spheres). We prove that it can be reduced to the Maxwellian case, for which explicit estimates are already known. Such a method is constructive, does not rely on Weyl’s Theorem and thus does not require Grad’s splitting. The more physical idea of the proof is to use geometr...
متن کامل